
XML
Lecture 5 (A)

+ DTD + Namespaces

Assignment One

§ Assignment one question sheet is available on
LMS

§ Submission deadline is 5pm, Friday, Week 7
§ You have been advised to have finished Labs 3 and

Lab 4 before attempting a final prototype solution for
the assignment
§ If you have not started/finished labs 3 and lab 4, do

so as soon as possible, and then start/continue
working on the assignment

§ You definitely should read the question a few times
after its release and start planning and developing
initial and intermediate prototypes

§ All students should submit their assignment on LMS
according to the instructions in the assignment
question sheet AND have their working application
residing under their home directory on
ceto.murdoch.edu.au

§ Late submission penalties will apply - refer to the
assignment question sheet

Assignment One

What we have done so far

n We have covered:
n Installation and configuration of a fully featured Web

server (Apache)
n Overview of Web Development
n JavaScript functions and objects
n Fundamentals of Node.js development environment
n Web Client and Web Server Application Development

using Node.js

4

What do we expect you to achieve?

n Gain an understanding of the following topics:
n Web Computing and Programming
n Development of Web Server and Client applications
n Understanding of XML technologies
n Understanding JSON technologies
n Understanding jQuery basics (and tables / graphs)
n Understanding of Web Services

5

n Demonstrate the ability to develop programming
skills for the development of Web applications

n Demonstrate the ability to develop Web Client
and Server applications that can deal with XML
and JSON

n An appreciation of alternate development
approaches

6What do we expect you to achieve?

7

Introduction to XML

8Lecture Objectives

n Understand why there is a need for XML
n A first look at:

n The components of XML
n How XML relates to other technologies

9Mark-up Languages and XML

n The use of mark-up languages is prevalent
among the computing world
§ HTML (HyperText Markup Language) is the most

visible markup language
n To understand the reason for XML (eXtensible

Markup Language), it is important that you have
an understanding of the concept of mark-up
languages
§ XML is basically about creating new mark-up

languages

10Style, Structure and Content

n Historically, when all documents were only in
printed form, a major design consideration for a
document was its style (or layout and
presentation)

n The structure of the document was left to the
reader of the printed document to work out based
on the presented style

11An Example Page

n Looking at this page you can decipher that:
n The words in large blue font at the top constitute the

title
n The words on the right of each large dot constitute a

main point
n The words on the right of a smaller dot constitute sub-

points to main points
n The number at the top right is the page number

12

\par\font=44\color=blue\bold
An Example Page
\no-bold\newline\par\font=32
\bullet
Looking at this page you can decipher that:
\newline\indent\font=28
\bullet
The words in large font at the top constitute the
\italic
title
\no-italic\newline\indent\font=28
The words on the right of each large dot constitute a
\italic
main point
… etc ...

Example Page Using
RTF Style Instructions

13Can a Program do the Same?
n Probably, but not efficiently!!

n These days we have moved far beyond that basic
approach when representing information

n The key to having vast amounts of information passed
around in a network environment is to have the
information processed and dealt with by automated
programs (i.e., applications)

n If a program receives a document containing only style
instructions (like the previous PowerPoint or RTF
representations), how can it work out the structure of
the information??

14Mark-Up Languages

n So, the point of mark-up languages is to:
n Provide information about the structure and content

in a document, so that they can be efficiently
processed by programs automatically

n The most important task is to separate the structure
and content components of the documents from the
style components

15Mark-Up Languages
for Different Purposes

n But different problem domains will have different
ways of describing their data
n It is impossible to come up with just one set of mark-

up tags, and expect them to work for all problem
areas

n So mark-up meta-languages like XML do not
define a specific set of tags for all purposes

n Instead, they specify a standard way for
defining the tags of completely new mark-up
languages

16Why Mark-up Meta-Languages?
n The key is standardization, by having these

meta-languages provide:
n A standardized method and a consistent set of

tools to create new mark-up languages appropriate
for particular problem domains, and to make these
new languages public

n The ability to parse and process the documents of
these new mark-up languages in a consistent way -
this is very important for application development in
the problem domain

n If the meta-language is defined well, it provides an
easy way to create new mark-up languages

17The Simplicity of HTML

n In the beginning, most development in document
formatting concentrated on HTML, since HTML:
n Was simple and easy to learn
n Provided mechanisms to do some interesting things

(display formatting, links, embedded graphics and
other multimedia, etc.)

n Was forgiving on errors (like forgetting a closing tag)
n However, with the need for more complex

applications, developers began using HTML
beyond what it was originally defined to do

18

§ The main problem with HTML was that it was
never designed to be extensible (that is,
capable of being extended as necessary)

§ As a software developer, if you want to
exchange documents on the web, but find that
HTML doesn’t do what you need it to do, you
cannot easily create and use a new language
that extends HTML, and share this new
language with others

Beyond HTML

19Enter XML

n Standards for XML began to appear under the
umbrella of the World-Wide-Web Consortium
(W3C) in 1996 to address some of the above
problems

n XML is actually a subset of the Standard
Generalized Mark-up Language (SGML), which
began as the Generalized Mark-up Language
(GML) in the 1960’s

20So What IS XML?

n XML’s foundation is the XML recommendations,
which define what an XML document must and
must not have

n This forms the basis for creating a new mark-up
language

n New mark-up languages created following the
XML specifications are called Applications of
XML

21An Example Page

n Looking at this page you can decipher that:
n The words in large blue font at the top constitute the

title
n The words on the right of each large dot constitute a

main point
n The words on the right of a smaller dot constitute sub-

points to main points
n The number at the top right is the page number

22

<page>
<title>An Example Page</title>
<main_point>

<main_point_text>
Looking at this page you can decipher that:

</main_point_text>
<sub_point>

The words in large font at the top constitute the title
</sub_point>
<sub_point>

The words on the right of each large dot constitute a main point
</sub_point>
<sub_point>

The words on the right of a smaller dot constitute sub-points
</sub_point>
<sub_point>The number at the top right is the page number</sub_point>

</main_point>
<page_number>22</page_number>

</page>

n We can mark-up the document like this:

Our Previous Example

23Our Previous Examples

n Compared to our two previous documents below,
writing a program to identify and use the different
components of the page will be so much more
efficient using our own mark-up

24A Sensible XML Document Example
<course>

<name>Bachelor of Science – Mobile and Web Application
Development

</name>
<duration>3 years</duration>
<unit>

<title>ICT375 Advanced Web Programming</title>
<lecturer>

<surname language="English">Xie</surname>
<othernames language="English">Hong</othernames>
<email>H.Xie@murdoch.edu.au</email>

</lecturer>
</unit>
<unit>

<title>ICT283 Data Structures and Abstraction</title>
<lecturer>

<surname>Rai</surname>
<othernames>Shri</othernames>
<email>s.rai@murdoch.edu.au</email>

</lecturer>
</unit>

</course>

25The Document Type Definition

<!DOCTYPE course [
<!ELEMENT course (name, duration, unit+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT duration (#PCDATA)>
<!ELEMENT unit (title, lecturer*, tutor*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT lecturer (surname, othernames?, email*)>
<!ELEMENT tutor (surname, othernames?, email*)>
<!ELEMENT surname (#PCDATA) >
<!ATTLIST surname language CDATA "English">
<!ELEMENT othernames (#PCDATA) >
<!ATTLIST othernames language CDATA "English">
<!ELEMENT email (#PCDATA)>

]>

n A Document Type Definition (DTD) defines the
structure of an XML document
n It can be put at the beginning of an XML document, or

can be linked to the document via an external file

26Is that all there is to XML?

n Also associated with the core concepts of XML is
a whole set of other technologies

n Some examples include:
n Alternate ways (to the DTD) to define document types

(XML Schema)
n Programming language APIs which allow you to

easily write software to parse and process XML
documents

n Specifications on how to represent an XML document
at a program level (eg: DOM, SAX)

27Is that all there is to XML?

n Specifications on how to transform an XML
document, to another document type, or to another
XML document of the same type (using XSLT)

n Specifications on how to define special elements in a
document (eg: isolating XML document components
using XPath)

n Special browsers and general web browsers capable
of displaying XML documents
n How do general web browsers know what to display when it

doesn't know what the XML document tags "mean"?
n This is a question we will explore as we study the various

XML technologies

28Popular XML Applications
n Math Markup Language

n MathML is a low-level specification for describing
mathematics as a basis for machine to machine
communication

n MathML also provides a foundation for the inclusion of
mathematical expressions in Web pages

n Synchronized Multimedia Integration Language
n SMIL defines mark-up for layout, timing, visual transitions,

animations, media embedding, etc.

n SMIL allows the presentation of media items (text, images,
video, audio), as well as links to other SMIL presentations,
and files from multiple web servers

29Popular XML Applications

n Chemical Markup Language
n CML is an approach to managing molecular

information using XML
n CML uses XML's portability to help developers and

chemists design inter-operable documents
n electronic business XML (ebXML)

n ebXML standardizes XML document exchange
between businesses and organizations

n XHTML
n eXtensible Hypertext Markup Language

30The Design Goals of XML

n As proposed by W3C:
1. XML shall be straight-forwardly usable over

the Internet
2. XML shall support a wide variety of

applications
3. XML shall be compatible with SGML
4. It shall be easy to write programs which

process XML documents

31

5. The number of optional features in XML is to
be kept to the absolute minimum, ideally
zero

6. XML documents should be human-legible
and reasonably clear

7. The XML design should be prepared quickly
8. The design of XML shall be formal and

concise
9. XML documents shall be easy to create

The Design Goals of XML

32

wireless device

University
Relational
Database

Web
Server

XML file

XML file

Web site
update script

XML-capable
Application

XML

XML

convert

HTML
convert

XML
editor

Web site
search script (1)

(2)

(3)

(4)

(5)

(6)

(7)

HTML

XML file

plug-in

Example Usages of Our course XML

Database
Server

Google Chrome

Microsoft Edge

Mozzila Firefox

33

1. A daily update script extracts course information from a
relational database and generates XML files to put on a web
site

2. A data-entry person uses an XML editor to create new XML files
with course information

3. A user surfing the web site uses the search facility to find some
course information. The search script queries the database,
gets back the results, and sends the results back to the browser
in XML. The browser converts the XML to HTML and displays
HTML as normal

4. A user using a web browser accesses some course information.
The web server converts the XML document to HTML and
sends HTML back to the browser. Browser displays HTML as
normal

Example Usages of Our course XML
From the Previous Diagram

34

5. A user using a web browser with a special course-info plug-in
accesses some course information. The web server sends the
XML document directly to the browser. The browser uses the
plug-in to display the course information

6. A user on a wireless device accesses some course
information. The XML document is sent to a mobile app
installed on the user's wireless device, which displays the
course information.

7. An XML-enabled application connects to the database and
retrieves some course information. The database server sends
results back in XML

Example Usages of Our course XML
From the Previous Diagram

35Endless Possibilities

n The previous diagram demonstrates only a very
small fraction of what is possible with XML
technologies

n The possibilities for which software does what,
when, where and how, are endless

36XML Still Valuable

n Though JSON is replacing XML as a preference
with Web developers for Web site development
(because of its ease of use for data storage and
transfer), XML is still the preference with many
corporations for storing vast amounts of data

n In order to utilize the vast amounts of legacy
data still available via the Internet, being able to
understand and work with XML technologies is
still a very valuable asset for those seeking to
work in this industry

37For Further Information

n Follow W3C’s XML activities:
n http://www.w3.org/
n http://www.w3.org/XML/

The XML
Document,
DTD, and
Namespaces
Lecture 5 (B)

2

The XML Document

3

n Understand the role of the XML document
format in XML technologies

n Know the format and syntax of an XML
document, as specified by W3C’s XML 1.0
Recommendation

n In regard to what we are doing in the unit:
n XML is an important set of Internet technologies for

use in different solutions in different areas
n The XML document format is the first and most

basic step in understanding how all the different
XML technologies work

Lecture Objectives

4

n The importance of the XML document format
specifications

n Definition of a well-formed XML document
n Components of a well-formed XML document

Lecture Outline

5The XML Document Specification

n In the last set of lecture slides, we discussed
two key factors leading to the success of XML
as a set of technologies:
1. Standardization
2. Ease of creating new mark-up languages

n The quality of the specifications of the basic
XML document format are based on these two
factors

6Reference

n The current base XML 1.0 Recommendation
(5th Edition) was released on 26th November
2008
n http://www.w3.org/TR/REC-xml
n Note: the above specification was modified in

place to replace broken links to RFC4646 and
RFC4647 (investigate to find out more)

7

8

n The W3C’s XML 1.0 Recommendation specifies
two sets of constraints for an XML document:
n A well-formed document: The XML document must

conform to the basic syntax rules
n A valid document: Having a Document Type

Definition (DTD) to specify allowed components in
the XML document (eg: tags, structure)

n For now, we will consider what makes an XML
document well-formed

The XML Document Specification

9

n Having well-defined documents will make it:
n Easy for document publishers and information

content creators to create new documents
n Easy for software to parse and process the

documents
n Easy for people to read and understand the

documents

n These reflect the core design goals of XML

The Importance of the
XML Document Specification

10The Design Goals of XML - Recap

n As proposed by W3C:
1. XML shall be straight-forwardly usable over the

Internet
2. XML shall support a wide variety of applications
3. XML shall be compatible with SGML
4. It shall be easy to write programs which process

XML documents

11

5. The number of optional features in XML is to be
kept to the absolute minimum, ideally zero

6. XML documents should be human-legible and
reasonably clear

7. The XML design should be prepared quickly
8. The design of XML shall be formal and concise
9. XML documents shall be easy to create

The Design Goals of XML - Recap

12A Well-Formed XML Document

§ ALL XML documents MUST be well-formed
n That is, they MUST conform to all syntax

definitions in the XML 1.0 Recommendation
§ Unlike HTML, XML software are not allowed to

"correct" errors
n That is, non-well-formed documents will always

cause unrecoverable errors in all XML software

13

n A well-formed XML document consists of three
parts:
n Prolog (optional)
n A root element
n Miscellaneous parts (optional)

n Can exist within the Prolog and the root element
parts

A Well-Formed XML Document

14The Prolog

n The prolog exists at the beginning of an XML
document. It can consist of:
n An XML declaration, followed by
n Miscellaneous parts, followed by
n A Document Type Definition (DTD) - more later

n Although formally the prolog can be empty, the
W3C specifications recommend that no
document leaves out the XML declaration part
n Most XML documents on the Internet do have an

XML declaration

15The XML Declaration

n The declaration must have at least the "xml"
keyword and the "version" attribute

n These keywords are tagged with the starting and
ending characters <?xml … ?>

n Some example XML declarations:

<?xml version="1.0"?>

<?xml version="1.0" standalone="yes"?>

<?xml version="1.0" standalone="yes" encoding="UTF-8"?>

16Root Element

n The root element: all of the "actual" document
data resides within this element

n There can be one and only one root element,
which can have child elements

n All child elements must be properly nested
within the root element, and each other

n The effect of these conditions means that the
elements form a hierarchical or tree-like
structure
n The root element (obviously) is at the root of the tree

17Miscellaneous Parts

n The "Miscellaneous parts" of an XML
document can consist of:
n Comments (the same syntax as HTML comments)

Eg:

<!-- Start of the main tag -->

n Processing Instructions (within <?xml … ?>)
Eg:

n White Spaces

<?xml stylesheet type="text/css"
href="mycss.css"?>

18In Summary

§ A well-formed XML document consists of (in
order):
n (Optional) Prolog with

n A <?xml …?> declaration
n Miscellaneous parts
n Document Type Definition

n A required root element
n Within which all other elements exists

n (Optional) Miscellaneous parts

IM
PO

RTA
NT !

19<?xml version="1.0"?>
<?xml stylesheet type="text/xsl" href="ss.xsl"?>
<!DOCTYPE course [

<!ELEMENT course (name, duration, unit+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT duration (#PCDATA)>
<!ELEMENT unit (title, lecturer*, tutor*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT lecturer (surname, othernames?, email*)>
<!ELEMENT tutor (surname, othernames?, email*)>
<!ELEMENT surname (#PCDATA) >
<!ATTLIST surname language CDATA "English">

]>

<course>
<name>Bachelor of Science - Internet Computing</name>
<duration>3 years</duration>
<unit>

<title>ICT375 Advanced Web Programming</title>
<lecturer>

<surname language="English">Xie</surname>
<othernames language="English">Hong</othernames>
<email>H.Xie@murdoch.edu.au</email>

</lecturer>
</unit>
<unit>

<title>ICT108 Introduction to Multimedia and the Internet</title>
<lecturer>

<surname>Rai</surname>
<othernames>Shri</othernames>
<email>s.rai@murdoch.edu.au</email>

</lecturer>
</unit>

</course>

Prolog

Root
Element

Declaration

DTD (more shortly)

Processing
Instructions
(misc parts)

Nested
Child

Elements

20Elements in XML

n The contents of an XML document (the
information the author wants to convey) are
broken up into units called elements

n Different types of elements are given different
names, and are tagged with a start-tag, an
end-tag, and the element name
n For example, in the following element the content

“12345678” of type “StudentID” is marked-up with
the tag <StudentID>
<StudentID>12345678</StudentID>

21

n All basic information text must be tagged in an
XML file

n All elements must exist properly nested within
the root element (and each other)
n The left example below demonstrates overlap, and

is therefore incorrect in syntax:

INCORRECT CORRECT
<p> <p>

</p>
 </p>

Elements in XML

22Empty Elements

n Some elements do not need closing tags
n These are called empty elements
n You will have come across the concept of empty

elements in HTML, with tags like <hr>,
,
, etc.

n In XML, tags of empty elements must end with
a forward slash - “/”
n Thus in XHTML, which is the XML compliant

version of HTML, we have <hr /> and

tags

23Attributes of Elements

n Elements may also contain attributes
n The attribute names and values are defined

within the element’s start-tag. Eg:

n All attribute values must be enclosed in quotes
n As the Student element above consists of only

attributes, it must be treated as an empty
element, thus closed with a forward slash

<Student ID="12345678" status="enrolled"
workrate="high" />

24Attributes vs Child Elements
n For any element, you can define information

about the element by using attributes, or you can
define a new child element

n For example, the following elements contain the
same information:

<lecturer>
<surname>Xie</surname>
<othernames>Hong</othernames>
<email>H.Xie@murdoch.edu.au</email>

</lecturer>

<lecturer surname="Xie" othernames="Hong"
email="H.Xie@murdoch.edu.au" />

Attributes:

Child elements:

25

n Sometimes there are obvious technical reasons
for using one versus the other
n Eg: if you want to use a default value – this is

easier with an attribute rather than with a child
element

n In many cases the decision will be a judgment
call

n If using an attribute, there should at least be
some differences between the nature of the
information in the attributes; otherwise define a
new child element

Attributes vs Child Elements

26Pre-Defined Entity References
n Since some characters like "<" and ">" have

special use in XML, you cannot use them in
some places. Eg:
<number attribute=">5"> 4 </number> - Wrong syntax!
<number attribute=">5"> 4 </number> - Correct!

n There are 5 pre-defined entity references to
alleviate these types of situations:

< The < character
> The > character
& The & character
' The ‘ character
" The " character

27Defining New Entities

n Besides the pre-defined entity references, you
may also define new entities in the XML
document

n This can be useful for:
n Reference to commonly used names
n Multi-language support
n Managing binary files
n And more ...

28CDATA Sections

n Since XML is very sensitive to characters like
"<" and "&", you can define CDATA sections in
an XML document which are not supposed to
be parsed
n CDATA stands for character data

n Eg:
<![CDATA[
I’m free to use any of my own special
characters like <&*@!]% in here!!!

]]>

29In Summary

n Things to watch out for when constructing a
well-formed XML document:
n You should have an XML declaration at the

beginning
n You must include at least the root element
n All other elements must be contained within the root

element
n You must correctly nest all child elements - no

overlaps

30

n Things to watch out for when constructing a
well-formed XML document (cont.):
n You must include both start and end tags for non-

empty elements
n You must use "/" to close empty element tags
n You must use unique attribute names
n You must use quotes for attribute values
n You must use the pre-defined entity references

instead of the "special" original characters

In Summary

31

The Document Type Definition

32Lecture Objectives

n Understand what a Document Type Definition
(DTD) is, and its role in an XML document

n Understand the role and importance of the DTD
in extending XML

n Know the format and syntax of DTDs as
specified by W3C’s XML 1.0 Recommendation

33

n In regard to what we are doing in this unit:
n XML is an important set of Internet technologies for

use in different solutions in different areas
n Having the ability to create new mark-up languages is

a key factor in XML technologies
n The DTD is technically one of the main methods

used to define the syntax of an XML document,
and therefore it is a mechanism used to specify a
new mark-up language

Lecture Objectives

34

§ What is a Document Type Definition?
§ What constitutes a valid XML document?
§ The syntax of DTDs
§ DTDs and Validating Parsers

Lecture Outline

35The Document Type Definition

n We discussed how W3C’s XML 1.0
Recommendation specifies the syntax of a well-
formed XML document

n Part of this syntax allows a Document Type
Definition to be included in the Prolog

36A Valid XML Document

§ The Document Type Definition defines the
structure for the tags in an XML document:
§ What tags are allowed in the document
§ Which tags contain which other tags
§ Where the basic text data are located, etc…

n The XML 1.0 Recommendation defines a valid
document to be one which:
§ Has a Document Type Definition, AND
§ The XML document syntax conforms to the rules of

its own Document Type Definition

37Creating New Mark-Up Languages

n Since DTDs define the tags and how they relate
to each other, it is this component of XML that
defines a new mark-up language

n It is up to organizations, consortiums, groups,
partners, etc. to
n Decide on the mark-ups that are most appropriate

for their area
n Define the structure of the tags in the DTD

n … And then all their shared documents can
make use of the same DTD

38Declaration for a DTD

n A DTD can be defined in the XML document
prolog or in a separate file

n The DTD section of an XML document is called
the Document Type Definition Declaration
n The DTD Declaration is in the form of a
<!DOCTYPE> tag

n Internal DTDs are declared using the format
<!DOCTYPE rootname [DTD]>

39

<?xml version="1.0"?>
<?xml stylesheet type="text/xsl" href="ss.xsl"?>
<!DOCTYPE course [

<!ELEMENT course (name, duration, unit+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT duration (#PCDATA)>
<!ELEMENT unit (title, lecturer*, tutor*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT lecturer (surname, othernames?, email*)>
<!ELEMENT tutor (surname, othernames?, email*)>
<!ELEMENT surname (#PCDATA) >
<!ATTLIST surname language CDATA "English">
<!ELEMENT othernames (#PCDATA) >
<!ATTLIST othernames language CDATA "English">
<!ELEMENT email (#PCDATA) >

]>
<course>

<name>Bachelor of Science - Internet Computing</name>
<duration>3 years</duration>
<unit>

<title>ICT375 Advanced Web Programming</title>
<lecturer>

<surname language="English">Xie</surname>
<othernames language="English">Hong</othernames>
<email>H.Xie@murdoch.edu.au</email>

</lecturer>
</unit>
...

</course>

Prolog
DTD

XML

40Defining Elements in a DTD

n The syntax to declare elements in a DTD uses
a tag of the form:

<!ELEMENT name content_model>

n Where:
name is the name of the element or tag
content_model is one of

n EMPTY (meaning an empty element)
n ANY (meaning the parser should not check content)
n child elements, or
n mixed (meaning #PCDATA or child elements)

41

n Some examples:
<!ELEMENT book_header (title, author) >

<!ELEMENT staff (name, duty) >

<!ELEMENT document EMPTY >

<!ELEMENT undefined ANY >

<!ELEMENT info (#PCDATA) >

<!ELEMENT info ((field, value) | #PCDATA) >

Defining Elements in a DTD

42#PCDATA

n To define a section that contains the raw text
data of an XML document (i.e. the document
content), we use the keyword #PCDATA
n #PCDATA stands for parsed character data

n The #PCDATA is parsed, so cannot contain
special characters like "<"
n This is different from the CDATA section mentioned

earlier in the lecture, which is not parsed

43Defining Children
n To specify that one element contains another

element, we include the name of the element in
the content_model

n Eg:

§ Here the course and unit elements each have a
content_model containing the names of other
elements

§ The content_model is listed in parenthesis

<!ELEMENT course (name, duration, unit+) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT duration (#PCDATA) >
<!ELEMENT unit (title, lecturer*, tutor*) >

44Having Multiple Children

n To specify that one element may contain more
than one child element of a specific type, we
use special symbols:
x+ where + means 1 or more occurrences of element x
x* where * means 0 or more occurrences of element x
x? where + means 0 or 1 occurrence of element x
x, y which means element x followed by element y

(i.e. a sequence)
x | y which means element x or element y, but not both

45

n Some examples:
<!ELEMENT book_header (title?, author?, info*)>

<!ELEMENT staff (name, duty+) >

<!ELEMENT info ((field?, value) | #PCDATA) >

Having Multiple Children

46Sub-sequences with Parentheses

n As we have just seen in our last example, you
can include sub-sequences of child elements by
using parentheses in the child sequence

<!ELEMENT info ((field?, value) | #PCDATA) >

47DTD Comments

n Comments can be put anywhere in the DTD
section, using the same comment syntax as
defined by a well-formed XML document

n Eg:

<!DOCTYPE course [
...
<!-- This is the name of the course -->
<!ELEMENT name (#PCDATA) >
...

]>

48External DTDs

n DTDs not defined in the XML document itself
(i.e. defined in another file), can be referred to
by using a different declaration. Eg:
<!DOCTYPE course SYSTEM "course.dtd">

<!DOCTYPE course PUBLIC
"-//uni consortium//Custom Course v1.0//EN"

"http://university.edu.au/course.dtd">

§ SYSTEM means the file is located in the local filesystem of
the computer; you can specify a path to the file

§ PUBLIC means the resource is located at the given link
§ Note in either case, the XML root element must still be

defined

49

<?xml version="1.0"?>
<?xml stylesheet type="text/xsl" href="ss.xsl"?>
<!DOCTYPE course SYSTEM "course.dtd">

<course>
<name>Bachelor of Science - Internet Computing</name>
<duration>3 years</duration>
<unit>

<title>ICT375 Advanced Web Programming</title>
<lecturer>

<surname language="English">Xie</surname>
<othernames language="English">Hong</othernames>
<email>H.Xie@murdoch.edu.au</email>

</lecturer>
</unit>
...

</course>

<!ELEMENT course (name, duration, unit+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT duration (#PCDATA)>
<!ELEMENT unit (title, lecturer*, tutor*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT lecturer (surname, othernames?, email*)>
<!ELEMENT tutor (surname, othernames?, email*)>
<!ELEMENT surname (#PCDATA) >
<!ATTLIST surname language CDATA "English">
<!ELEMENT othernames (#PCDATA) >
<!ATTLIST othernames language CDATA "English">
<!ELEMENT email (#PCDATA) >

XML
document

course.dtd

Prolog
DTD

50Multiple DTDs

n You can define an XML document using
elements from multiple DTDs

n This is done using the concept of Namespaces
which we will look at shortly

51Validating Parsers

n All XML parsers require that the documents be
well-formed, but some publicly available parsers
do not check for validity

n XML parsers that validate the documents they
parse against the document’s DTD are called
validating parsers

52

Namespaces

53Learning Objectives

n Understand the concept of Namespaces in
XML documents

n We are studying how to use XML as an
important set of Internet technologies to use as
solutions in different areas

n Namespaces are an integral part of XML
n It allows us to use the same name for elements in

different contexts
n It allows us to clearly identify what names we are

referring to

54Name Conflicts in XML

n Since any element name can be used in XML
element tags, very often a name conflict will
occur when two (or more) different documents
attempt to use the same name (defined in their
DTDs) to describe two (or more) different types
of elements

n In an environment where there may be a lot of
XML documents being processed automatically
by software, this can create many problems and
lead to disastrous results

55Example Name Conflict

<table>
<tr>

<td>Some data</td>
</tr>

</table>

<table>
<name>Coffee Table</name>
<length>120</length>
<width>80</width>

</table>

§ We can not put these two sets of tags together
in a single document because the <table>
element will cause a name conflict

HTML Furniture Data (XML)

56Resolving Name Conflicts
Using Prefixes

§ One possible way to resolve name conflicts is
by using prefixes

§ In our example, we can define the two different
uses of the <table> tag with their own
individual prefix followed by a colon (:)
<html:table>

<furniture:table>

§ Note that the prefix must then be applied to
every start-tag and end-tag

57Resolving Name Conflicts
Using Prefixes

<html:table>
<html:tr>

<html:td>Some Data</html:td>
</html:tr>

</html:table>

<furniture:table>
<furniture:name>Coffee Table</furniture:name>
<furniture:length>120</furniture:length>
<furniture:width>80</furniture:width>

</furniture:table>

HTML

Furniture Data (XML)

58XML Namespaces

§ XML namespaces provide a simple method for
qualifying element and attribute names, used in
eXtensible Mark-up Language (XML)
documents, by associating them with
namespaces identified by Uniform Resource
Identifier (URI) references

59XML Namespace Declarations

<html:table
xmlns:html="http://www.w3.org/TR/html5/">
<html:tr>

<html:td>Entry</html:td>
</html:tr>

</html:table>

<furniture:table
xmlns:furniture="http://www.table.org/">
<furniture:name>Coffee Table</furniture:name>
<furniture:length>120</furniture:length>
<furniture:width>80</furniture:width>

</furniture:table>

A unique URI

60Namespaces and the
xmlns Attribute

n Instead of using only prefixes, our two examples
also include the xmlns attribute
xmlns:html=" ..Unique URI.. "
xmlns:furniture =" ..Unique URI.. "

n These have been added to their respective <table>
tags to give the element prefixes a qualified name
(QName), which associates the tags with a
namespace

n Note that xmlns means XML Namespace

61

n Although the namespace identifier is usually a
valid Uniform Resource Locater (URL), it does
not necessarily have to be a valid web address
n It can be any arbitrary string to uniquely identify the

particular namespace
n Hence, namespaces are identified by their Uniform

Resource Identifier (URI)

Namespaces and the
xmlns Attribute

62Mixing Namespaces

<my_information
xmlns:html="http://www.w3.org/TR/html5/"
xmlns:furniture="http://www.table.org/" >
<html:table>

...
</html:table>
<furniture:table>

...
</furniture:table>

</my_information>

§ We can mix namespaces by including multiple
identifiers in the start tag

63Default Namespaces

§ We can specify a default namespace, which will
apply to all tags without prefixes

<my_information
xmlns="http://www.w3.org/TR/html5/"
xmlns:furniture="http://www.table.org/">

<table>...</table>

<furniture:table>...</furniture:table>

</my_information>

Default namespace

64

n Unlike elements, the default namespace for
attributes is the namespace of the containing
element

Default Namespaces
for Attributes

<my_information
xmlns="http://www.w3.org/TR/html5/"
xmlns:furniture="http://www.table.org/" >
<table> ... </table>
<furniture:table color="red">

...
</furniture:table>

</my_information>

attribute name and value from the furniture
namespace, only apply to this namespace

65

n HTML5
n xmlns:html=“http://www.w3.org/TR/html5/”

n Schema
n xmlns:xsd=“http://www.w3.org/2000/XMLSchema”
n xmlns:xsi=“http://www.w3.org/2001/XMLSchema-

instance”
n XSLT

n xmlns:xsl=http://www.w3.org/1999/XSL/Transform

n Further Reading:
n http://www.w3.org/TR/REC-xml-names/

Some Well-Known Namespaces

66

